Swallow: Resource and Tag Recommender System Based on Heat Diffusion Algorithm in Social Annotation Systems
نویسندگان
چکیده
Social annotation systems (SAS) allow users to annotate different online resources with keywords (tags). These systems help users in finding, organizing, and retrieving online resources to significantly provide collaborative semantic data to be potentially applied by recommender systems. Previous studies on SAS had been worked on tag recommendation. Recently, SAS-based resource recommendation has received more attention by scholars. In the most of such systems, with respect to annotated tags, searched resources are recommended to user, and their recent behavior and click-through is not taken into account. In the current study, to be able to design and implement a more precise recommender system, because of previous users’ tagging data and users’ current click-through, it was attempted to work on the both resource (such as web pages, research papers, etc.) and tag recommendation problem. Moreover, by applying heat diffusion algorithm during the recommendation process, more diverse options would present to the user. After extracting data, such as users, tags, resources, and relations between them, the recommender system so called “Swallow” creates a graph-based pattern from system log files. Eventually, following the active user path and observing heat conduction on the created pattern, user further goals are anticipated and recommended to him. Test results on SAS data set demonstrate that the proposed algorithm has improved the accuracy of former recommendation algorithms.
منابع مشابه
An Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms
With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...
متن کاملTags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملImproving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data
The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...
متن کاملImproving the performance of recommender systems in the face of the cold start problem by analyzing user behavior on social network
The goal of recommender system is to provide desired items for users. One of the main challenges affecting the performance of recommendation systems is the cold-start problem that is occurred as a result of lack of information about a user/item. In this article, first we will present an approach, uses social streams such as Twitter to create a behavioral profile, then user profiles are clusteri...
متن کاملTOAST: A Topic-Oriented Tag-Based Recommender System
Social Annotation Systems have emerged as a popular application with the advance of Web 2.0 technologies. Tags generated by users using arbitrary words to express their own opinions and perceptions on various resources provide a new intermediate dimension between users and resources, which deemed to convey the user preference information. Using clustering for topic extraction and incorporating ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Intelligence
دوره 33 شماره
صفحات -
تاریخ انتشار 2017